Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Br J Cancer ; 130(10): 1609-1620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605247

ABSTRACT

BACKGROUND: Chordomas are rare osseous neoplasms with a dismal prognosis when they recur. Here we identified cell surface proteins that could potentially serve as novel immunotherapeutic targets in patients with chordoma. METHODS: Fourteen chordoma samples from patients attending Xuanwu Hospital Capital Medical University were subjected to single-cell RNA sequencing. Target molecules were identified on chordoma cells and cancer metastasis-related signalling pathways characterised. VEGFR-targeting CAR-T cells and VEGFR CAR-T cells with an additional TGF-ß scFv were synthesised and their in vitro antitumor activities were evaluated, including in a primary chordoma organoid model. RESULTS: Single-cell transcriptome sequencing identified the chordoma-specific antigen VEGFR and TGF-ß as therapeutic targets. VRGFR CAR-T cells and VEGFR/TGF-ß scFv CAR-T cells recognised antigen-positive cells and exhibited significant antitumor effects through CAR-T cell activation and cytokine secretion. Furthermore, VEGFR/TGF-ß scFv CAR-T cells showed enhanced and sustained cytotoxicity of chordoma cell lines in vitro compared with VRGFR CAR-T cells. CONCLUSIONS: This study provides a comprehensive single-cell landscape of human chordoma and highlights its heterogeneity and the role played by TGF-ß in chordoma progression. Our findings substantiate the potential of VEGFR as a target for CAR-T cell therapies in chordoma which, together with modulated TGF-ß signalling, may augment the efficacy of CAR-T cells.


Subject(s)
Chordoma , Immunotherapy, Adoptive , Single-Cell Analysis , Humans , Chordoma/therapy , Chordoma/genetics , Chordoma/pathology , Chordoma/immunology , Immunotherapy, Adoptive/methods , Female , Male , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Middle Aged , Adult , Bone Neoplasms/therapy , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/immunology
2.
Inflammation ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668836

ABSTRACT

Hepatocellular carcinoma (HCC), one of the most prevalent cancers globally, is closely associated with tumor-associated macrophages (TAMs), including monocyte-derived macrophages and liver-resident Kupffer cells. Understanding TAM heterogeneity at the cellular level is crucial for developing effective HCC prevention and treatment strategies. In this study, we conducted an integrated single-cell analysis of four cohorts (GSE140228, GSE125449, GSE149614 and GSE156625) to elucidate the TAM landscape in HCC. We identified 284 gene markers, termed Panmyeloid markers, that characterize myeloid cells within this context. Our analysis distinguished six clusters of monocyte-derived macrophages (Macro1-Macro6) and four clusters of Kupffer cells (Kupffer1-Kupffer4). Notably, CXCL10 + macrophages and MT1G + Kupffer cells, predominantly located within tumor tissues, exhibited distinct functional characteristics relevant to HCC. We also explored cellular communication between TAMs and T cells, uncovering potential signaling pathways such as the CXCL10/CXCL11-CXCR3 and CXCL12-CXCR4 networks. These findings enhance our understanding of TAMs in HCC and open new avenues for targeted therapeutic interventions.

3.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557885

ABSTRACT

Tikhonov regularization, or truncated singular value decomposition (TSVD), is usually used for dynamic light scattering (DLS) inversion of particles in suspension. The Tikhonov regularization method uses a regularization matrix to modify all singular values in the kernel matrix. The modification of large singular values cannot effectively reduce the variance of the estimated values but may introduce bias in the solution, resulting in poor disturbance resistance in the inversion results. The TSVD method, on the other hand, truncates all small singular values, which leads to the loss of particle size information during the inversion process. The shortcomings of the two methods mentioned above do not have a significant impact on the inversion of high signal-to-noise ratio data. However, compared to the classical DLS particle size inversion for non-flowing suspended particles, the DLS inversion of flowing aerosols is more significantly affected by noise, and the extraction of particle size information is more difficult due to the effect of flow velocity, resulting in worse inversion results with increasing aerosol flow velocity for both methods. To improve the accuracy of the particle size distribution (PSD) of flowing aerosols, we introduced a kernel matrix into the regularization matrix, and based on the principles of the two methods, the spectral information of the kernel matrix was utilized to make the modification of small singular values by the regularization matrix. Correspondingly, weak or no modification was made according to the values of large singular values to reduce the introduction of bias. The inversion results of simulated and measured data indicate that the reconstruction of the regularization matrix improves the anti-disturbance performance and avoids the loss of particle size information during the regularization inversion process, thereby significantly improving the PSD accuracy, which is affected by the dual effects of flow velocity and noise in the DLS measurement of flowing particles. The peak error and distribution error of the inversion results by reconstructing the regularization matrix are lower than those of Tikhonov regularization.

4.
Microbiol Spectr ; 12(5): e0183923, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38564670

ABSTRACT

Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE: We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.


Subject(s)
Heart Transplantation , Lacticaseibacillus rhamnosus , TOR Serine-Threonine Kinases , Animals , Male , Mice , Disease Models, Animal , Graft Rejection/prevention & control , Graft Survival/drug effects , Liver Neoplasms , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
5.
Int J Biol Macromol ; 264(Pt 1): 130537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432275

ABSTRACT

This study aimed to investigate the structural characteristics, in vivo antiatherosclerosis activity, and in vitro myocardial injury protection effects of polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Thus, crude polysaccharides of Allium macrostemon Bunge and Allium chinense G. Don significantly reduced serum lipid levels, improved cardiac myocyte morphology and arrangement, and relieved the development of myocardial fibrosis. Meanwhile, the lesion areas of the aorta and aortic valve had evident visual improvements. Furthermore, two main novel purified polysaccharides, namely, AMB-1 and ACGD-1, were isolated and characterized from crude Allium macrostemon Bunge and Allium chinense G. Don fractions, respectively. The purified polysaccharides mainly consisted of fructose and glucose and had molecular weights of 25.22 and 19.53 kDa, respectively. In addition, Fourier transform infrared spectroscopy, methylation, and nuclear magnetic resonance data revealed the primary structures of the AMB1 (or ACGD1) backbone with branched side chains. Scanning electron microscope analysis showed that the purified polysaccharides were both piled together in a lamellar or clastic form with a smooth surface along with linear or irregular bulges. Moreover, the purified polysaccharides both showed nontoxicity on H9c2 cells and effectively dropped hypoxia/reoxygenation-induced apoptosis by the BCL-2/BAX pathway. Overall, the characterization of the structural properties and in vivo and in vitro myocardial injury protection effects of Allium macrostemon Bunge and Allium chinense G. Don polysaccharides enriched our understanding of their nutritional and medicinal values. To the best of our knowledge, this is the first study on the structural characteristics and bioactivities of Allium chinense G. Don polysaccharides.


Subject(s)
Chive , Onions , Polysaccharides , Magnetic Resonance Spectroscopy , Polysaccharides/pharmacology
6.
Cancer Med ; 13(3): e6736, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38204220

ABSTRACT

BACKGROUND: The mechanism of decreased T cells infiltrating tumor tissues in hepatocellular carcinoma is poorly understood. METHODS: Cells were separated from the single-cell RNA-sequence dataset of hepatocellular carcinoma patients (GSE149614) for cell-cell communication. Flow cytometry, EDU staining, H3-Ser28 staining, confocal immunofluorescence staining, western blotting and naked microsubcutaneous tumors were performed for the mechanism of NGF-NGFR promoting proliferation. RESULTS: The present study has revealed that during the process of T-cell infiltration from adjacent tissues to tumor tissues, an inefficiency in NGF-NGFR communication occurs in the tumor tissues. Importantly, NGF secreted by tumor cells interacts with NGFR present on the membranes of the infiltrated T cells, thereby promoting the proliferation through the activation of mitotic spindle signals. Mechanistically, the mediation of mitotic spindle signal activation promoting proliferation is executed by HDAC1-mediated inhibition of unclear trans-localization of PREX1. Furthermore, PD-1 mAb acts synergistically with the NGF-NGFR communication to suppress tumor progression in both mouse models and HCC patients. Additionally, NGF-NGFR communication was positively correlates with the PD-1/PDL-1 expression. However, expressions of NGF and NGFR are low in tumor tissues, which is responsible for the invasive clinicopathological features and the disappointing prognosis in HCC patients. CONCLUSION: Inefficiency in NGF-NGFR communication impairs PD-1 mAb immunotherapy and could thus be utilized as a novel therapeutic target in the treatment of HCC patients in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/therapy , Programmed Cell Death 1 Receptor , Liver Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Guanine Nucleotide Exchange Factors , Nerve Tissue Proteins , Receptors, Nerve Growth Factor
7.
J Oral Pathol Med ; 52(10): 951-960, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37828627

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma is an increasingly prevalent cancer type characterized by high incidence and mortality rates. Its early detection is challenging, primarily because of the absence of early molecular markers. Cuproptosis is a novel regulatory mechanism of cell death with implications in various cancers. In this study, we aimed to study cuproptosis-related genes in oral squamous cell carcinoma to identify their prognostic value. METHODS: By analyzing genomic, bulk RNA-seq, and single-cell RNA-seq data, we investigated 13 cuproptosis-related genes in The Cancer Genome Atlas-Oral Squamous Cell Carcinoma dataset and Gene Expression Omnibus repository (GSE172577). RESULTS: ATP7A, ATP7B, and DLST were the most frequently mutated genes, with nine of our studied genes associated with overall survival. Single-cell analysis was conducted to identify cuproptosis-related tumor cells in oral squamous cell carcinoma, which revealed two distinct patterns based on the expression of cuproptosis-related genes. These patterns exhibit differences in genetic alterations and tumor immune microenvironment. Finally, we developed a cuproptosis index using a random forest algorithm based on cuproptosis pattern-related genes in which higher levels were linked to poorer prognosis. CONCLUSION: Our findings provide valuable insights into the mechanisms underlying oral squamous cell carcinoma-associated cuproptosis.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Cell Death , Mouth Neoplasms/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment/genetics , Copper
8.
Front Med (Lausanne) ; 10: 1211888, 2023.
Article in English | MEDLINE | ID: mdl-37654657

ABSTRACT

Clear cell adenocarcinoma of the cervix (CCAC) is a special type of HPV-independent cervical cancer. It has a low incidence rate, can be difficult to diagnose early, has a poor prognosis. Its peak incidence is in adolescence, which poses a great threat to women's health. Therefore, it is very important to explore the pathogenesis of cervical clear cell adenocarcinoma to guide subsequent treatment and prevention. This study analyzed 3 juvenile patients with CCAC diagnosed at the First Affiliated Hospital of Zhengzhou University. Using next-generation sequencing methods, we analyzed the pathogenesis of the patients and their close relatives by analyzing the genetic alterations of patients. CMTM5 was identified as the only shared mutated gene. Using published literature and comparative analyses of related disease-causing genes, 6 of the 19 genes (ALKBH7, MYCBP, MZF1, RNF207, RRS1, and TUSC2) were screened as genes with mutations in patients and had higher mutation rates in reproductive cancers. Pathway analysis showed that downregulated genes in non-HPV cervical cancer were mainly related to the immune system response, suggesting that non-HPV cervical cancer differs from HPV-infected cervical cancer in that the immune response is weaker, which is consistent with the weak correlation with viral infection.

9.
Front Nutr ; 10: 996675, 2023.
Article in English | MEDLINE | ID: mdl-36819690

ABSTRACT

Introduction: Allium macrostemon Bge. (AMB) and Allium chinense G. Don (ACGD) are both edible Allium vegetables and named officinal Xiebai (or Allii Macrostemonis Bulbus) in East Asia. Their medicinal qualities involve in lipid lowering and anti-atherosclerosis effects. And steroidal saponins, nitrogenous compounds and sulfur compounds are like the beneficial components responsible for medicinal functions. Sulfur compounds are the recognized main components both in the volatile oils of AMB and ACGD. Besides, few researches were reported about their holistic chemical profiles of volatile organic compounds (VOCs) and pharmacodynamic effects. Methods: In this study, we first investigated the lipid-lowering and anti-atherosclerotic effects of volatile oils derived from AMB and ACGD in ApoE -/- mice with high fat and high cholesterol diets. Results: The results showed the volatile oils of AMB and ACGD both could markedly reduce serum levels of TG, TC, and LDL-C (p < 0.05), and had no alterations of HDL-C, ALT, and AST levels (p > 0.05). Pathological results displayed they both could obviously improve the morphology of cardiomyocytes and the degree of myocardial fibrosis in model mice. Meanwhile, oil red O staining results also proved they could apparently decrease the lesion areas of plaques in the aortic intima (p < 0.05). Furthermore, head space solid phase microextraction coupled with gas chromatography tandem mass spectrometry combined with metabolomics analysis was performed to characterize the VOCs profiles of AMB and ACGD, and screen their differential VOCs. A total of 121 and 115 VOCs were identified or tentatively characterized in the volatile oils of AMB and ACGD, respectively. Relative-quantification results also confirmed sulfur compounds, aldehydes, and heterocyclic compounds accounted for about 85.6% in AMB bulbs, while approximately 86.6% in ACGD bulbs were attributed to sulfur compounds, ketones, and heterocyclic compounds. Multivariate statistical analysis showed 62 differentially expressed VOCs were observed between AMB and ACGD, of which 17 sulfur compounds were found to be closely associated with the garlic flavor and efficacy. Discussion: Taken together, this study was the first analysis of holistic chemical profiles and anti-atherosclerosis effects of AMB and ACGD volatile oils, and would benefit the understanding of effective components in AMB and ACGD.

10.
Front Oncol ; 12: 1009036, 2022.
Article in English | MEDLINE | ID: mdl-36408192

ABSTRACT

Cuproptosis represents a novel copper-dependent regulated cell death, distinct from other known cell death processes. In this report, a comprehensive analysis of cuproptosis in hepatocellular carcinoma (HCC) was conducted using multi-omics including genomics, bulk RNA-seq, single cell RNA-seq and proteomics. ATP7A, PDHA1 and DLST comprised the top 3 mutation genes in The Cancer Genome Atlas (TCGA)-LIHC; 9 cuproptosis-related genes showed significant, independent prognostic values. Cuproptosis-related hepatocytes were identified and their function were evaluated in single cell assays. Based on cuproptosis-related gene expressions, two immune patterns were found, with the cuproptosis-C1 subtype identified as a cytotoxic immune pattern, while the cuproptosis-C2 subtype was identified as a regulatory immune pattern. Cuproptosis-C2 was associated with a number of pathways involving tumorigenesis. A prognosis model based on differentially expressed genes (DEGs) of cuproptosis patterns was constructed and validated. We established a cuproptosis index (CPI) and further performed an analysis of its clinical relevance. High CPI values were associated with increased levels of alpha-fetoprotein (AFP) and advanced tumor stages. Taken together, this comprehensive analysis provides important, new insights into cuproptosis mechanisms associated with human HCC.

11.
Oxid Med Cell Longev ; 2022: 5188584, 2022.
Article in English | MEDLINE | ID: mdl-35993024

ABSTRACT

Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines, the cytokines investigated within previous studies have been limited and have not included a systematic analysis of proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2 were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation, and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1, Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation, NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment and prevention of this condition.


Subject(s)
Cytokines , Liver Transplantation , Animals , Cytokines/metabolism , Disease Models, Animal , Mice , Proteomics , Signal Transduction
12.
Front Immunol ; 13: 890019, 2022.
Article in English | MEDLINE | ID: mdl-35619708

ABSTRACT

Rejection is still a critical barrier to the long-term survival of graft after liver transplantation, requiring clinicians to unveil the underlying mechanism of liver transplant rejection. The cellular diversity and the interplay between immune cells in the liver graft microenvironment remain unclear. Herein, we performed single-cell RNA sequencing analysis to delineate the landscape of immune cells heterogeneity in liver transplantation. T cells, NK cells, B cells, and myeloid cell subsets in human liver and blood were enriched to characterize their tissue distribution, gene expression, and functional modules. The proportion of CCR6+CD4+ T cells increased within an allograft, suggesting that there are more memory CD4+ T cells after transplantation, in parallel with exhausted CTLA4+CD8+ T and actively proliferating MKI67+CD8+ T cells increased significantly, where they manifested heterogeneity, distinct function, and homeostatic proliferation. Remarkably, the changes of CD1c+ DC, CADM+ DC, MDSC, and FOLR3+ Kupffer cells increase significantly, but the proportion of CD163+ Kupffer, APOE+ Kupffer, and GZMA+ Kupffer decreased. Furthermore, we identified LDLR as a novel marker of activated MDSC to prevent liver transplant rejection. Intriguingly, a subset of CD4+CD8+FOXP3+ T cells included in CTLA4+CD8+ T cells was first detected in human liver transplantation. Furthermore, intercellular communication and gene regulatory analysis implicated the LDLR+ MDSC and CTLA4+CD8+ T cells interact through TIGIT-NECTIN2 signaling pathway. Taken together, these findings have gained novel mechanistic insights for understanding the immune landscape in liver transplantation, and it outlines the characteristics of immune cells and provides potential therapeutic targets in liver transplant rejection.


Subject(s)
Liver Transplantation , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Humans , Liver Transplantation/adverse effects , Sequence Analysis, RNA , Transplantation, Homologous
13.
Cell Death Dis ; 13(3): 213, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256589

ABSTRACT

Tumor heterogeneity has been associated with immunotherapy and targeted drug resistance in hepatocellular carcinoma (HCC). However, communications between tumor and cytotoxic cells are poorly understood to date. In the present study, thirty-one clusters of cells were discovered in the tumor tissues and adjacent tissues through single-cell sequencing. Moreover, the quantity and function exhaustion of cytotoxic cells was observed to be induced in tumors by the TCR and apoptosis signal pathways. Furthermore, granzyme failure of cytotoxic cells was observed in HCC patients. Importantly, the GZMA secreted by cytotoxic cells was demonstrated to interact with the F2R expressed by the tumor cells both in vivo and in vitro. This interaction induced tumor suppression and T cell-mediated killing of tumor cells via the activation of the JAK2/STAT1 signaling pathway. Mechanistically, the activation of JAK2/STAT1 signaling promoted apoptosis under the mediating effect of the LDPRSFLL motif at the N-terminus of F2R, which interacted with GZMA. In addition, GZMA and F2R were positively correlated with PD-1 and PD-L1 in tumor tissues, while the expressions of F2R and GZMA promoted PD-1 mAb-induced tumor suppression in both mouse model and HCC patients. Finally, in HCC patients, a low expression of GZMA and F2R in the tumor tissues was correlated with aggressive clinicopathological characteristics and poor prognosis. Collectively, GZMA-F2R communication inefficient induces deficient PD-1 mAb therapy and provide a completely novel immunotherapy strategy for tumor suppression in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Granzymes/metabolism , Humans , Immunotherapy , Janus Kinase 2/metabolism , Liver Neoplasms/metabolism , Mice , Programmed Cell Death 1 Receptor/metabolism , STAT1 Transcription Factor/metabolism , T-Lymphocytes/metabolism
14.
Int J Hyperthermia ; 39(1): 358-371, 2022.
Article in English | MEDLINE | ID: mdl-35184661

ABSTRACT

BACKGROUND: Hyperthermia is a widely used adjunct treatment for different cancers including nasopharyngeal carcinoma (NPC). The protooncogene c-Myc is up-regulated in NPC and its expression is associated with poor prognosis. OBJECTIVE: We hypothesized that c-Myc constitutes an important hyperthermia treatment target, and we investigated its contribution to hyperthermia responses in NPC. METHODS: The growth of the human NPC cell lines CNE1 and CNE2 was analyzed using CCK-8 and clonogenicity assays after 43 °C hyperthermia, knockdown or overexpression of c-Myc. Flow cytometry measurements assessed cell cycle parameters and apoptosis, while levels of c-Myc together with key transcriptional targets were determined using qPCR and Western blotting. Parallel experiments were undertaken using NPC xenografts in nude mice and lastly, global transcriptomic changes were determined using 'RNAseq'. RESULTS: Hyperthermia increased the ubiquitination and proteasomal destruction of c-Myc, causing a rapid decline in c-Myc protein levels in NPC cells. Similar to c-Myc knockdown, NPC cells treated with hyperthermia showed growth inhibition associated with the downregulation of c-Myc target genes. Moreover, low levels of c-Myc could be sustainably repressed in NPC cells through repeated hyperthermia treatments. Importantly, the key findings of growth inhibition and decreased c-Myc protein levels were reproduced in NPC tumor xenografts. Bioinformatic analyses showed that downregulation of c-Myc constituted a central node in the hyperthermia response of NPC cells. CONCLUSION: Our study reveals that hyperthermia can readily destabilize c-Myc levels in NPC cells and inhibit tumor growth. This proposes new strategies for implementing hyperthermia to target c-Myc-driven cancers to improve therapeutic efficacy.


Subject(s)
Hyperthermia, Induced , Nasopharyngeal Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Mice , Mice, Nude , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/therapy
15.
Cancer Immunol Immunother ; 71(9): 2185-2195, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35084549

ABSTRACT

Chordoma is a rare and aggressive bone tumor. An accurate investigation of tumor heterogeneity is necessary for the development of effective therapeutic strategies. This study aims to assess the poorly understood tumor heterogeneity of chordomas and identify potential therapeutic targets. Single-cell RNA sequencing was performed to delineate the transcriptomic landscape of chordomas. Six tumor samples of chordomas were obtained, and 33,737 cells passed the quality control test and were analyzed. The main cellular populations identified with specific markers were as follows: chordoma cells (16,052 [47.6%]), fibroblasts (6945 [20.6%]), mononuclear phagocytes (4734 [14.0%]), and T/natural killer (NK) cells (3944 [11.7%]). Downstream analysis of each cell type was performed. Six subclusters of chordomas exhibited properties of an epithelial-like extracellular matrix, stem cells, and immunosuppressive activity. Although few immune checkpoints were detected on cytotoxic immune cells such as T and NK cells, a strong immunosuppressive effect was exerted on the Tregs and M2 macrophages. In addition, the cellular interactions were indicative of enhancement of the TGF-ß signaling pathway being the main mechanism for tumor progression, invasion, and immunosuppression. These findings, especially from the analysis of molecular targeted therapy and tumor immune microenvironment, may help in the identification of therapeutic targets in chordomas.


Subject(s)
Bone Neoplasms , Chordoma , Bone Neoplasms/pathology , Chordoma/genetics , Chordoma/pathology , Gene Expression Profiling , Humans , Transcriptome , Tumor Microenvironment/genetics
16.
Opt Express ; 29(23): 38567-38581, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808907

ABSTRACT

In ultra-low concentration suspensions, particle number fluctuations in the scattering volume add a long delay component to the intensity autocorrelation function (ACF) in dynamic light scattering (DLS) measurements. This gives a strong artifact peak in the particle size distribution (PSD) recovered. To improve the accuracy of DLS at ultra-low concentrations, we analyzed the different decay characteristics of particle Brownian motion and particle number fluctuation in the ACF. By differentiating the ACF we were able to identify and separate the number fluctuation term and then analyze the ACF to recover the PSD. The results for simulated DLS data at 151nm and 690nm diameters with average particle numbers of 6, 12, 24 and 48 in the scattering volume at four noise levels show that, compared with the usual DLS data processing method, inversion of the ACF after the separation of the number fluctuation term effectively eliminates the strong artifact peaks, and the relative errors of peak positions and distribution errors are significantly reduced. This was further verified with experimental results from samples of standard polystyrene spheres.

18.
J Neuroimmunol ; 350: 577438, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33197842

ABSTRACT

Neurological complications are very common after liver transplantation. This study focuses on clinical risk factors and susceptibility gene polymorphisms of neurological complications after liver transplantation. A better predictive model is obtained. This study proves that MTRR is an independent susceptibility gene for neurological complications. Compared with the independent risk factor of abdominal infection, MTRR has a more advantageous value in predicting neurological complications after liver transplantation.

19.
Med Sci Monit ; 26: e920394, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32170053

ABSTRACT

BACKGROUND Oxidative stress and myocardial apoptosis are features of doxorubicin-induced cardiac toxicity that can result in cardiac dysfunction. Previous studies showed that microRNA-143 (miR-143) was expressed in the myocardium and had a role in cardiac function. This study aimed to investigate the effects and possible molecular mechanisms of miR-143 on oxidative stress and myocardial cell apoptosis in a mouse model of doxorubicin-induced cardiac toxicity. MATERIAL AND METHODS Mice underwent intraperitoneal injection of doxorubicin (15 mg/kg) daily for eight days to develop the mouse model of doxorubicin-induced cardiac toxicity. Four days before doxorubicin administration, a group of mice was pretreated daily with a miR-143 antagonist (25 mg/kg/day) for four consecutive days by tail vein injection. The study included the use of a miR-143 antagomir, or anti-microRNA, an oligonucleotide that silenced endogenous microRNA (miR), and an agomir to miR-143, and also the AKT inhibitor, MK2206. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblot analysis were used to measure mRNA and protein expression, respectively. RESULTS Doxorubicin treatment increased the expression of miR-143, which was reduced by the miR-143 antagomir. Overexpression of miR-143 increased doxorubicin-induced myocardial apoptosis and oxidative stress. The use of the miR-143 antagomir significantly activated protein kinase B (PKB) and AKT, which were reduced in the presence of the AKT inhibitor, MK2206. However, the use of the miR-143 antagomir further down-regulated AKT phosphorylation following doxorubicin treatment and increased AKT activation. CONCLUSIONS In a mouse model of doxorubicin-induced cardiac toxicity, miR-143 increased oxidative stress and myocardial cell apoptosis following doxorubicin treatment by inhibiting AKT.


Subject(s)
Cardiotoxicity/genetics , Doxorubicin/toxicity , MicroRNAs/metabolism , Oxidative Stress/genetics , Animals , Antagomirs/administration & dosage , Apoptosis/drug effects , Apoptosis/genetics , Cardiotoxicity/etiology , Cell Line , Disease Models, Animal , Heart/drug effects , Heterocyclic Compounds, 3-Ring/administration & dosage , Male , Mice , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects , Signal Transduction/genetics , Up-Regulation/drug effects
20.
RSC Adv ; 10(58): 35141-35152, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35515695

ABSTRACT

Bavachinin, a natural bioactive flavanone, is reported to have many pharmacological proprieties, especially anti-osteoporosis activity. Here we aim to determine the roles of cytochrome P450s (CYP), UDP-glucuronosyltransferases (UGT), and efflux transporters in metabolism and drug-drug interactions (DDI) of bavachinin. Phase I metabolism and glucuronidation were performed by human liver microsomes (HLM) and human intestine microsomes (HIM). Reaction phenotyping was used to identify the main CYPs and UGTs. Gene silencing methods were employed to investigate the roles of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in HeLa1A1 cells. Inhibition mechanisms towards CYPs and UGTs were explored through kinetic modeling. Three phase I metabolites (M1-M3) and one glucuronide (G1) were detected after incubation of bavachinin with HLM and HIM. The intrinsic clearance (CLint) values of M1 and G1 by HLM were 89.4 and 270.2 µL min-1 mg-1, respectively, while those of M3 and G1 by HIM were 25.8 and 247.1 µL min-1 mg-1, respectively. CYP1A1, 1A2, 1B1, 2C8, 2C19, and UGT1A1, 1A8 participated more in bavachinin metabolism. The metabolism showed marked species difference. BCRP and MRP4 were identified as the main contributors. Bavachinin displayed potent inhibitory effects against several CYP and UGT isozymes (K i = 0.28-2.53 µM). Bavachinin was subjected to undergo metabolism and disposition by CYPs, UGTs, BCRP, MRP4, and was also a potent non-selective inhibitor against several CYPs and UGTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...